Tutorial 9

Haowei Qi

March 27, 2025

Contents

1	Question 1: §8.1 Q7	1
2	Question 2: §8.1 Q17	1
3	Question 3: §8.1 Q21	1
4	Question 4: §8.2 Q7	2
5	Question 5: §8.2 Q13	2

1 Question 1: §8.1 Q7

Evaluate $\lim(e^{-nx})$ for $x \in \mathbb{R}, x \ge 0$.

Proof. It converges pointwise to f on $x \ge 0$ where

$$f = \begin{cases} 1 & x = 0\\ 0 & x > 0 \end{cases}$$

But it is divergent on x < 0.

For any $\epsilon > 0$ and x > 0, let $N = \left[\frac{\ln \frac{1}{\epsilon}}{x}\right] + 1$. Then $|e^{-nx} - 0| \le e^{-\ln(\frac{1}{\epsilon})} = \epsilon$ for any n > N. For x = 0, $e^{-n \cdot 0} = 1 = f(0)$. But it doesn't converge uniformly.

By Lemma 8.1.5, Let $\epsilon = \frac{1}{2e}$, $x_n = \frac{1}{n}$. Then $f_n(x_n) = \frac{1}{e} > \frac{1}{2e}$ for all n.

By Lemma 8.1.8, $||e^{-nx} - f||_{\{x \ge 0\}} = \sup\{|e^{-nx} - f| : x \ge 0\} = 1$

For any given x < 0, $\lim_{n \to \infty} e^{-nx} = \infty$.

		-

2 Question 2: §8.1 Q17

Show that if a > 0, then the convergence of the sequence in Exercise 7 is uniform in the interval $[a, \infty)$, but not uniform in the interval $[0, \infty)$.

Proof. We have already proved that it is not uniform on interval $[0, \infty)$.

By definition, fix a > 0. By definition, for any $\epsilon > 0$, let $N = \left[\frac{\ln \frac{1}{\epsilon}}{a}\right] + 1$, then

$$|e^{-nx} - 0| \le \epsilon$$

for n > N and $x \ge a$.

By Lemma 8.1.8, $||e^{-nx}||_{\{x \ge a\}} = e^{-na}$. Hence $\lim ||e^{-nx}||_{\{x \ge a\}} = 0$ and it converges uniformly.

3 Question 3: §8.1 Q21

Show that if (f_n) , (g_n) converge uniformly on the set A to f, g, respectively, then $(f_n + g_n)$ converges uniformly on A to f + g.

Proof. By definition, for any $\epsilon > 0$, there exist N_1 and N_2 , such that $|f_n - f| < \epsilon/2$ for $n > N_1$ and $x \in A$, as well as $|g_n - g| < \epsilon/2$ for $n > N_2$ and $x \in A$. Let $N = \max N_1, N_2$. Then $|f_n + g_n - (f + g)| \le |f_n - f| + |g_n - g| < \epsilon$ for n > N and $x \in A$. Hence $f_n + g_n \to f + g$ uniformly.

By Lemma 8.1.8, since $||f_n + g_n - (f+g)|| \le ||f_n - f|| + ||g_n - g||$, $\lim ||f_n + g_n - (f+g)|| \le \lim ||f_n - f|| + \lim ||g_n - g|| = 0$. Hence $f_n + g_n \to f + g$ uniformly.

4 Question 4: §8.2 Q7

Suppose f_n converges to f on the set A, and suppose the each f_n is bounded on A. (That is, each n there is a constant M_n such that $|f_n(x)| \leq M_n$ for all $x \in A$.) show that the function f is bounded on A.

Proof. Since f_n converges, s uniformly on A, for any $\epsilon > 0$, there exists an N such that $|f_n - f| \le \epsilon$ for all $x \in A$ and $n \ge N$.

Thus,

$$|f| \le |f_N| + |f_N - f| \le M_N + \epsilon,$$

for all $x \in A$.

Hence, f is a bounded function.

5 Question 5: §8.2 Q13

If a > 0, show that $\lim \int_a^{\pi} \frac{\sin nx}{nx} dx = 0$. What if a = 0.

Proof. Since a > 0,

$$\|\frac{\sin nx}{nx}\|_{[a,\pi]} \le \|\frac{1}{nx}\|_{[a,\pi]} = \frac{1}{an} \to 0.$$

Hence $\frac{\sin nx}{nx}$ converges to 0 uniformly. Since $\frac{\sin nx}{nx}$ is continuous on $[a, \pi]$, $\frac{\sin nx}{nx} \in \mathcal{R}[a, \pi]$. Hence, by Theorem 8.2.4, $0 = \int_a^{\pi} 0 \, dx = \lim \int_a^{\pi} \frac{\sin nx}{nx} \, dx$.

Since $\frac{\sin nx}{nx}$ is continuous on $(0, \pi]$, it is sufficient to check whether it is right-continuous at 0. By L'Hôpital's rule, $\frac{\sin nx}{nx}|_{x=0} = 1$ same as $\lim_{x\to x^+} \frac{\sin nx}{nx}$. Thus, $\frac{\sin nx}{nx} \in \mathcal{R}[0, \pi]$.

Since $\left|\frac{\sin nx}{nx}\right| \leq 1$, by Bounded Convergence Theorem, $0 = \lim \int_0^\pi \frac{\sin nx}{nx} \, dx$.